1. Shut off air pressure. Install filter/regulator in air line -

INSTALLATION

Panel thickness: 2 to 6 mm (0.06" to 0.25"
Panel mounting hole diameter: 30 mm (1.19")

Gauges:
- 1/8" Ports: 6,2 dm³/s (13 scfm)
- 1/4" Ports: 6,9 dm³/s (15 scfm)

Nominal bowl size: 31 ml (1 fluid ounce)

Gauges:
- 1/8" PTF with PTF main ports
- 1/8" ISO Rc with ISO Rc main ports
- 1/8" ISO Rc with ISO G main ports

Drain connection: 1/8" pipe thread

Automatic drain operation: Spitter type drain operates
- As close as possible to the device being serviced
- As close as possible to the air supply when used as a downstream filter/regulator
- Vertically (bowl down)

Gauging ports:
- Can also be used as additional outlets for regulated air.

TECHNICAL DATA

Fluid: Compressed air
Maximum pressure:
- Transparent bowl: 10 bar (150 psig)
- Metal bowl: 17 bar (250 psig)

Operating temperature:
- ** Air supply must be dry enough to avoid ice formation at temperatures below +2°C (+35°F)
- -34° to +50°C (-30° to +125°F)
- -34° to +65°C (-30° to +150°F)

Particle removal:
- 5 µm or 40 µm filter element

Air quality:
- Within ISO 8573-1, Class 3 and Class 5 (particulates)

Typical flow with a 5µm element at 7 bar (100 psig) inlet pressure, 6.3 bar (90 psig) set pressure, and a droop of 1 bar (15 psig) from set:
- 1/8" Ports: 6.2 dm³/s (13 scfm)
- 1/4" Ports: 6.9 dm³/s (15 scfm)

Elastomers:
- Transparent: Polycarbonate
- Metal: Nitrile

Element:
- Sintered polypropylene

Bonnet:
- Acetal

Body:
- Zinc

NOTES FOR CURRENT AND EARLY BOWLS

- Current Bonnet and Body - Valve seat (9), seal (10), and gasket (27) used with current body. Early body used a stud (32) to secure polypropylene element to the body. Current element (31) replaces the element and stud.
- Early Bonnet and Body - Valve seat (9), seal (10), and gasket (27) used with current body when sintered bronze element (32, 33, 34, 35) is installed.

DISASSEMBLY

1. Filter/regulator can be disassembled without removal from pipe line.
2. Shut off inlet pressure. Reduce pressure in inlet and outlet lines to zero.
3. Turn adjustment (2 or 5A) fully counterclockwise.
4. Turn bowl and bonnet counterclockwise and remove from line.
5. Disassemble in general accordance with the item numbers on exploded view. Do not remove the manual drain unless replacement is necessary. Remove and replace drain only if it malfunctions.

CLEANING

1. Clean plastic bowl with warm water only. Clean other parts with warm water and soap.
2. Rinse and dry parts. Blow out internal passages in body (15, 16) with clean, dry compressed air. Blow air through filter element (31, 34) from inside to outside to remove surface contaminants.
3. Inspect parts. Replace those found to be damaged. Replace plastic bowl when a metal bowl is damaged or plastic bowl shows signs of cracking or cloudiness.

ASSEMBLY

1. Lubricate seals and o-rings with o-ring grease. Apply a small amount of anti-seize lubricant to full length of threads on metal bowls.
2. Assemble the unit as shown on the exploded view.
3. Torque Table

TORQUE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NM (INCH-POUNDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5A (Bonnet)</td>
</tr>
<tr>
<td>5A</td>
<td>7.34 to 8.47 (65 to 75)</td>
</tr>
<tr>
<td>9</td>
<td>(Early valve seat) 0.45 to 0.68 (4 to 6)</td>
</tr>
<tr>
<td>11</td>
<td>(Current valve seat) 0.34 to 0.56 (3 to 5)</td>
</tr>
<tr>
<td>23, 29, 31, 32</td>
<td>(Element, bowl, stud) 0.56 to 1.13 (5 to 10)</td>
</tr>
<tr>
<td>20, 26</td>
<td>(Manual drain valve) 0.17 to 0.28 (1.5 to 2.5)</td>
</tr>
</tbody>
</table>

† Diaphragm pin (8) must slide freely thru valve seat after assembly.

Filter/Regulator

<table>
<thead>
<tr>
<th>Port</th>
<th>Bowl Relief Type</th>
<th>Gauge</th>
<th>Substitute</th>
<th>Drain</th>
<th>Element</th>
<th>Spring (Outlet Pressure Range)</th>
<th>Thread Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8"</td>
<td></td>
<td></td>
<td>A</td>
<td>Automatic</td>
<td>1.0 to 0.7 bar (1 to 10 psig)</td>
<td>A...PTF</td>
</tr>
<tr>
<td>2</td>
<td>1/4"</td>
<td></td>
<td></td>
<td>M</td>
<td>Manual</td>
<td>3.0 to 0.3 bar (50 to 50 psig)</td>
<td>B...ISO Rc taper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.0 to 0.3 bar (135 to 100 psig)</td>
<td>G...ISO G parallel</td>
</tr>
</tbody>
</table>

* Outlet pressure can be adjusted to pressures in excess of, and less than, those specified. Do not use these units to control pressures outside of the specified ranges.

© Norgren 2001
CAUTION
Water vapor will pass through these units and could condense into liquid form downstream as air temperature drops. Install an air dryer if water condensation could have a detrimental effect on the application.

WARNING
These products are intended for use in industrial compressed air systems only. Do not use these products where pressures and temperatures can exceed those listed under Technical Data.
Polycarbonate plastic bowls can be damaged and possibly burst if exposed to such substances as certain solvents, strong alkalies, compressor oils containing ester-based additives or synthetic oils. Fumes of these substances in contact with the polycarbonate bowl, externally or internally, can also result in damage. Clean with warm water only.
Use metal bowl in applications where a plastic bowl might be exposed to substances that are incompatible with polycarbonate.
If outlet pressure in excess of the filter/regulator pressure setting could cause downstream equipment to rupture or malfunction, install a pressure relief device downstream of the filter/regulator. The relief pressure and flow capacity of the relief device must satisfy system requirements.
The accuracy of the indication of pressure gauges can change, both during shipment (despite care in packaging) and during the service life. If a pressure gauge is to be used with these products and if inaccurate indications may be hazardous to personnel or property, the gauge should be calibrated before initial installation and at regular intervals during use.
Before using these products with fluids other than air, for non industrial applications, or for life-support systems consult Norgren.