

- > Ø 25 ... 40 mm
- New compact, spacesaving design
- > Proven sealing system
- > Integral switch mounting
- Buffer or adjustable cushioning
- Standard foot mountings

Technical features

Medium:

Compressed air, filtered, lubricated or non-lubricated

Operation:

Double acting

Buffer or adjustable cushioning Magnetic or non-magnetic piston

Operating pressure:

1 ... 8 bar

Operating temperature:

-30°C ... +80°C max. Consult our Technical Service for use below +2°C.

Cylinder Diameters:

25, 32, 40 mm

Strokes:

6000 mm or 235 inches max. longer strokes on request

Materials:

Barrel: Anodised aluminium alloy End covers: Zinc plated steel / aluminium

Yoke: Anodised aluminium alloy Cover and Pistons: Plastic Sealing strip: Polyurethane Cover strip: Polyamide Seals: Nitrile rubber and

polyurethane

Ordering Examples:

See page 1.6.005.02

Mountings and Switches:

See page 1.6.005.02

Non-magnetic piston Buffer cushioning

Magnetic piston
Buffer cushioning

Non-magnetic piston Adjustable cushioning

Magnetic piston
Adjustable cushioning

Mountings

Switches

Model Reed	Solid state	Voltage a.c.	d.c.	Current Max.	Temperature °C	LED	Features	Cable Length	Cable Type	Plug-in Cable Straight	90°	Catalogue Page
M/40/2	_	10 to 240	10 to 170	0,18 A	-20° to +80°	•	_	2 m	PVC 2 x 0,25	_	_	N 4.3.041
M/40/C/2	_	10 to 110	10 to 175	0,25 A	-20° to +80°	_	Changeover	2 m	PVC 3 x 0,25	_	_	N 4.3.041
M/40/P	_	10 to 60	10 to 75	0,18 A	-20° to +80°	•	_	2 m	PVC 3 x 0,25	M/P34614/5	M/P34615/5	N 4.3.041
_	M/41/2	_	10 to 30	0,20 A	-20° to +70°	•	NPN	2 m	PVC 3 x 0,25	_	_	N 4.3.043
_	M/42/2	_	10 to 30	0,20 A	-20° to +70°	•	PNP	2 m	PVC 3 x 0,25	_	_	N 4.3.043
_	M/42/P	_	10 to 30	0,20 A	-20° to +70°	•	PNP	2 m	PVC 3 x 0,25	M/P34614/5	M/P34615/5	N 4.3.043

Full information on switches (technical data, polyurethane cable, dimensions etc.) please refer to relevant catalogue pages

Ordering Examples

Cylinders

To order a 25 mm bore cylinder with adjustable cushioning, magnetic piston and a 800 mm stroke quote:

A44025AADAA0800

Mountings

To order a centre support mounting style 'V' for 25 mm bore cylinder quote: **Q44025AAAAAM332**

Switches

To order a reed switch with LED and 2 m cable length quote: $\mathbf{M/40}$

Loading values for LINTRA-LITE® cylinders

The values given in the table below show the forces in the directions Fy and Fz and the maximum moments Mx, My and Mz. All values are applicable for speeds up to 0,2 m/s. A requirement for using these values is a smooth movement of the mass over the whole stroke length of the cylinder. The reference point from which the moments for all cylinders should be calculated is the centre line of the piston.

Total loads

When a LINTRA-LITE® cylinder has to take several loads and moments, an additional calculation is necessary using the following formula:

$$\frac{Mx}{Mx \max} + \frac{My}{My \max} + \frac{Mz}{Mz \max} + \frac{Fy}{Fy \max} + \frac{Fz}{Fz \max} \leq 1$$

Thrust • Air consumption • Cushion length • Loading values

Cylinder Ø	Theoretical forces at 6 bar (N)	Air consumption per stroke at 6 bar (I/cm)	Cushion length (mm)	Loading values Fy (N)	Fz (N)	Mx (Nm)	My (Nm)	Mz (Nm)
25	250	0,035	18	90	280	1	13	4
32	410	0,056	23	120	370	2	21	6
40	640	0,088	35	240	720	4	56	16

Loading values applicable to a speed of \leq 0,2 m/s. Maximum working life is normally reached below a speed of 1 m/s.

Cylinder Deflection

Cylinder \emptyset 32 mm, stroke length 3500 mm, external load 200 N Maximum distance between supports = 1500 mm (see diagram). Therefore additional support is required.

Deflection due to cylinder weight

supports 2500 mm

Required: Total deflection

1.Deflection due to external force (f1):

See diagram > (1mm/90 N) · 120 N

2.Deflection due to cylinder weight (f2): See diagram >

+0.6 mm

Total deflection:

1,9 mm

Cylinder Ø 40 mm, external force 120 N, distance between

Maximum permitted deflection: f1 + f2 ≤ 1 mm per 1000 mm stroke Result:

1,9 mm are below the max. permitted deflection of 2,5 mm

Basic dimensions

A44000 ... - Standard Cylinders

stroke

Cylinder Ø	Α	В	С	D	E	F	G	Н	J	K	ØL	М	N
25	77	100	12	12,5	5	12	M 5	40	36	18	7	18	40
32	93	120	18	15	7	15	M 6	50	48	26	9	20	49,5
40	117,5	165	18	20	7	17	M 6	60	54	30	9	20	57
Cylinder Ø	0	Р	Q	R (Port	threads)	øs	Т	U	W	X	Z max.	at 0 mm	per 100 mm
25	2,5	28	22	G 1/8	NPT 1/8	12	30,5	2	21,5	53,5	7	0,50 kg	0,15 kg

40

49,5

3

28,5

35

70

81,5

10

10

0,80 kg

1,30 kg

0,25 kg

0,35 kg

3,5

3,5

32

24

24

G 1/8

G 1/4

NPT 1/8

NPT 1/4

20

32

 $^{^{\}ast}$ Optional ISO G or NPT-thread

Mountings

Q44000AAAAAM332 — Centre Support Mounting Style 'V'

Q44000AAAAAM337 — Swinging Bridge Mounting Style 'S'

Cylinder Ø	AB	AC	AD (A/F)	Ø AE	AF	AG	АН	AJ	AK	AL	ВА
25	25	40	10	6,6	58	70	21,5	3	31	53,5	40
32	30	50	10	9	70	83	28,5	3	43	70	50
40	40	60	10	9	79	92	35	3	55	81,5	60
Cylinder Ø	ВВ	ВС	BD (DIN 74)	BE	BF	BG	ВН	BJ	Fx	Style 'S'	Style 'V'
25	40	28	BM 5	± 8	29	28	68,5 +5	2	250 N	0,15 kg	0,07 kg
32	55	40	BM 6	± 8	31	30	87,5 + 5	2	410 N	0,20 kg	0,15 kg
40	55	40	BM 6	± 8	31	30	99,5 + 5	2	640 N	0,25 kg	0,25 kg

Spares

Cylinders with buffer cushioning

Cylinders with adjustable cushioning

Cylinder Ø	Model	Spares kit	Comprising Item	Description	Quantity	Seal strip Item 8	Cover strip Item 9	Barrel Item 4
25	A44025AA★AA	Q44025AACAAT788*	3	Buffer	2	M/P41628/*	M/P41631/*	M/P41607/*
32	A44032AA★AA	Q44032AACAAT788*		Seal/cover strip Piston/cushion seal	1/1 2/2	M/P41629/*	M/P41632/*	M/P41613/*
40	A44040AA★AA	Q44040AACAAT788*		O-Ring	2/2	M/P41630/*	M/P41633/*	M/P41602/*
			37	Cover	1			
			Grease		2			

[★] Variants A, B, C or D

Note: Spares kits are common for all cylinder types

Please quote the cylinder type number when ordering spare parts

Warning

These products are intended for use in industrial compressed air systems only. Do not use these products where pressures and temperatures can exceed those listed under

»Technical features/data«.

Before using these products with fluids other than those specified, for non-industrial applications, life-support systems or other applications not within published specifications, consult IMI Precision Engineering.

Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes.

The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure.

System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided.

System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products.

^{*} Insert stroke length