

Handbuch Ventilinseln VS18 / VS26 mit IO-Link Schnittstelle



# IMI



# Änderungsblatt:

Im Änderungsblatt werden alle Änderungen des Handbuches registriert, die nach der offiziellen Freigabe des Dokumentes notwendig geworden sind.

| Index | Kapitel | Beschreibung der Änderung | Datum      | Name     |
|-------|---------|---------------------------|------------|----------|
| А     | Alle    | Neuanlage                 | 20/08/2020 | A. Wicik |
|       |         |                           |            |          |
|       |         |                           |            |          |
|       |         |                           |            |          |
|       |         |                           |            |          |
|       |         |                           |            |          |
|       |         |                           |            |          |

Dieses Handbuch erhebt keinen Anspruch auf Vollständigkeit, da nicht alle VS18 / VS26 Ventilinsel-Varianten enthalten sind.

Erweiterungen / Änderungen sind deshalb vorbehalten.



# Inhaltsverzeichnis

| 1 | Zu    | dieser Dokumentation                                                | .6  |
|---|-------|---------------------------------------------------------------------|-----|
| 2 | Wi    | chtige Hinweise                                                     | .7  |
|   | 2.1   | Erdung und Potentialausgleich                                       | .7  |
|   | 2.2   | Verwendung eines IO-Link Masters mit Port Class B                   | .7  |
|   | 2.3   | Hinweis zum Auslieferungszustand in Bezug auf die Ausbaustufe       | . 8 |
|   | 2.4   | Modul für zusätzliche Versorgung/Entlüftung (ISEM)                  | . 8 |
|   | 2.5   | ATEX Ventilinseln                                                   | . 8 |
| 3 | Ele   | ektrische Anschlüsse der VS18 und VS26 Ventilinseln                 | . 9 |
|   | 3.1   | IO-Link Anschluss (Port Class B)                                    | . 9 |
| 4 | Inb   | etriebnahme                                                         | 10  |
|   | 4.1   | IODD-Datei                                                          | 10  |
|   | 4.2   | Konfiguration eines IO-Link Master Ports im TIA Portal              | 10  |
|   | 4.3   | Parametrisierung der Ventilinsel                                    | 11  |
|   | 4.3   | 6.1 Gerätespezifische Parameter                                     | 11  |
|   | 4.3   | 8.2 Kanalspezifische Parameter                                      | 12  |
|   | 4.4   | Firmware-Version und Seriennummer                                   | 13  |
| 5 | Pro   | ozessdaten                                                          | 14  |
|   | 5.1   | Ausgangsdaten                                                       | 14  |
|   | 5.2   | Ausgangsverhalten beim Einschalten und im Fehlerzustand             | 15  |
|   | 5.3   | Eingangsdaten                                                       | 16  |
| 6 | Dia   | agnose und Status-LEDs                                              | 17  |
|   | 6.1   | Status LEDs                                                         | 17  |
|   | 6.1   | .1 Beschreibung der Status LEDs                                     | 17  |
|   | 6.1   | .2 Beschreibung der IO-Link LED (IOL)                               | 17  |
|   | 6.1   | .3 Beschreibung der Systemfehler Status LED (SF)                    | 17  |
|   | 6.1   | .4 Beschreibung der Elektronik-Spannungsversorgungs-Status LED (VS) | 17  |
|   | 6.1   | .5 Beschreibung der Ventil-Spannungsversorgungs-Status LED (VA)     | 18  |
|   | 6.2   | Beschreibung der Status - LEDs für die Ventilscheiben               | 18  |
|   | 6.3 D | iagnose                                                             | 19  |
|   | 6.3   | 3.1 Gerätespezifische Diagnose                                      | 19  |
|   | 6.3   | 3.2 Kanalspezifische Diagnose                                       | 19  |
|   | 6.4   | Online-Diagnose mit Siemens TIA Portal                              | 20  |



|   | 6.4  | 4.1 Kanaldiagnose des IO-Link Masters                | 20 |
|---|------|------------------------------------------------------|----|
|   | 6.5  | Diagnose mit einem IO-Link Master Konfigurationstool | 21 |
| 7 | IO   | 0-Link Fehlercodes                                   | 22 |
| 8 | Eię  | genschaften IO-Link Schnittstelle                    | 22 |
| 9 | Er   | rweiterung der Ventilinsel                           | 23 |
|   | 9.1  | Übersicht der möglichen Kombinationen                | 23 |
|   | 9.2  | Ventilinsel mit 2 Ventilscheiben                     | 24 |
|   | 9.3  | Ventilinsel mit 4 Ventilscheiben                     | 25 |
|   | 9.4  | Ventilinsel mit 6 Ventilscheiben                     | 25 |
|   | 9.5  | Ventilinsel mit 8 Ventilscheiben                     |    |
|   | 9.6  | Ventilinsel mit 10 Ventilscheiben                    |    |
|   | 9.7  | Ventilinsel mit 12 Ventilscheiben                    | 27 |
|   | 9.8  | Ventilinsel mit 14 Ventilscheiben                    | 27 |
|   | 9.9  | Ventilinsel mit 16 Ventilscheiben                    |    |
|   | 9.10 | Ventilinsel mit 18 Ventilscheiben                    |    |
|   | 9.11 | Ventilinsel mit 20 Ventilscheiben                    |    |
| 1 | 0 E  | Elektrische Daten                                    | 31 |
| 1 | 1. T | Technische Daten                                     |    |
|   | 11.1 | Technische Daten VS18 und VS26                       |    |
|   | 11.2 | 2 Technische Daten VS18                              |    |
|   | 11.3 | Technische Daten VS26                                |    |



# Kontaktinformationen

#### Norgren GmbH

Werk Fellbach Stuttgarter Straße 120 70736 Fellbach Tel: +49 711 5209-0



# **1** Zu dieser Dokumentation

Diese Dokumentation enthält die Informationen, um die VS18 und VS26 Ventilinseln mit IO-Link Schnittstelle in Betrieb zu nehmen, zu bedienen und Störungen zu detektieren.

Allgemeine technische Informationen wie pneumatische Parameter, Details zu Ventilscheiben-Varianten und deren Konfiguration können den Standard-Datenblättern für die VS18 und VS26 Ventilinsel-Serien entnommen werden, da sich lediglich das Anschlussmodul unterscheidet.

Zu den Datenblättern gelangen Sie unter folgenden Weblinks:

- VS26: <u>http://cdn.norgren.com/pdf/de\_5\_1\_350\_VS26.pdf</u>
- VS18: <u>http://cdn.norgren.com/pdf/de 5 1 250 VS18.pdf</u>



# 2 Wichtige Hinweise

### 2.1 Erdung und Potentialausgleich

Eine fachgerechte Erdung und ein niederohmiger Potentialausgleich sind sehr wichtig für die elektrische Störsicherheit von IO-Link Ventilinseln. Um die Auswirkung von elektromagnetischen Beeinflussungen zu reduzieren, sollte die Ventilinsel über den Erdungsanschluss am Anschlußmodul mit dem Erdpotential der Anlage oder des Schaltschrankes verbunden werden. Die niederohmige Anbindung ist im Störungsfall durch Messung zu qualifizieren.

Für den Erdungsanschluss ist das M4-Gewinde auf der Rückseite des Anschlußmoduls zu verwenden. Die Position des M4-Gewindes ist mittels des roten Pfeiles gekennzeichnet. Der Querschnitt des verwendeten Erdungskabels sollte dabei mindesten 1,5 mm<sup>2</sup> betragen.



# 2.2 Verwendung eines IO-Link Masters mit Port Class B

Beim Anschluss der VS18 und VS26 IO-Link-Ventilinseln ist zu beachten, dass ein IO-Link Master mit Port Class B verwendet wird, der über Pin 2 und Pin 5 des M12-Konnektors eine zusätzliche, galvanisch getrennte Versorgungsspannung mit dem Maximalstrom für die Anzahl der vorhandenen Ventilscheiben gewährleisten kann. Der erforderliche Maximalstrom für eine bestimmte Konfiguration kann in Abhängigkeit der vorhandenen Elektromagneten / Pilotventilen nach den Angaben in Kapitel 10 berechnet werden. Bei der Wahl des Anschlußkabels ist auf eine vollständige Belegung und die entsprechende Strombelastung der Adern 2 & 5 zu achten.



### 2.3 Hinweis zum Auslieferungszustand in Bezug auf die Ausbaustufe

Ändert man den Auslieferungszustand der Ventilinsel in Bezug auf die Ausbaustufe - Ergänzen / Reduzieren von Ventilscheiben - ist es erforderlich die Ventilinsel vorher komplett spannungsfrei zu schalten. Es ist empfohlen den Spannungsversorgungsstecker abzuziehen. Nachdem Ergänzen / Reduzieren von Ventilscheiben muss die neue Ausbaustufe initialisiert werden. Während der Initialisierung wird die Anzahl der Ventilscheiben ermittelt, es ist einmalig zwingend notwendig, dass die Elektronik-Spannungsversorgung (VB) zusammen mit der Ventil-Spannungsversorgung (VA) während dieser Initialisierung anliegt.

### 2.4 Modul für zusätzliche Versorgung/Entlüftung (ISEM)

Wenn die Kanaldiagnose auf der Ventilinsel aktiviert ist, sollte die Einstellung der Kanaldiagnose an der Position des Moduls für zusätzliche Versorgung/Entlüftung deaktiviert werden. Dies muss getan werden, um Fehleranzeigen aufgrund fehlender elektronischer Komponenten innerhalb des Moduls zu vermeiden.

# 2.5 ATEX Ventilinseln

Bitte beachten Sie die ATEX Installationsanweisung (750376700000000) für IO-Link Ventilinseln beim Einsatz im Ex-Bereich.

Zu der ATEX Installationsanweisung für IO-Link Ventilinseln gelangen Sie unter folgendem Weblink:

https://www.norgren.com/de/de/technischer-service/betriebs-und-wartungsanleitungen/ventile



# 3 Elektrische Anschlüsse der VS18 und VS26 Ventilinseln



Ansicht von oben

- IO-Link Anschluss (Port Class B) (Stecker M12, 5-polig, A-kodiert)
- 2. Ventilinsel-Status LEDs
- 3. Ventilscheiben-Status LEDs

# 3.1 IO-Link Anschluss (Port Class B)



| M12 / 5-polig / Stecker / A-kodiert |        |                                      |  |  |  |  |  |  |
|-------------------------------------|--------|--------------------------------------|--|--|--|--|--|--|
| Pin Nr.                             | Signal | Funktion                             |  |  |  |  |  |  |
| 1                                   | L+     | Elektronik-Spannungsversorgung (VS+) |  |  |  |  |  |  |
| 2                                   | 2L+    | Ventil-Spannungsversorgung (VA+)     |  |  |  |  |  |  |
| 3                                   | L-     | Elektronik-Spannungsversorgung (VS)  |  |  |  |  |  |  |
| 4                                   | C/Q    | IO-Link Kommunikation                |  |  |  |  |  |  |
| 5                                   | 2M     | Ventil-Spannungsversorgung (VA GND)  |  |  |  |  |  |  |



# 4 Inbetriebnahme

**Hinweis:** Die Vorgehensweise der Installation eines IO-Link Teilnehmers hängt von der Konfigurationsmethode ab. Bitte lesen Sie auch das Handbuch des IO-Link Masters.

**Hinweis:** Alle Beispiele in diesem Dokument wurden mit dem Siemens TIA Portal V15 und einem Balluff IO-Link Master erstellt. Die Beispielkonfigurationen der Ventilinsel wurden über das IO-Link Device Tool von TMGTE erstellt.

# 4.1 IODD-Datei

Die IODD Datei enthält alle Informationen zu den Kommunikationseigenschaften, den Geräteparametern, Identifikationsdaten, Prozessdaten und Diagnosedaten der Ventilinsel.

https://www.norgren.com/de/de/technischer-service/software

Die Konfigurationstools der Masterhersteller sind in der Lage eine IODD einzulesen, und das damit beschriebene Device (zum Teil graphisch) darzustellen.

Dazu muss die IODD in das Konfigurationstool des Masters importiert werden.



Import der IODD ins Konfigurationstool des IO-Link Masters

# 4.2 Konfiguration eines IO-Link Master Ports im TIA Portal

Die Zuweisung der Ventilinsel an einen IO-Link Port wird hier exemplarisch an einem PROFINET IO-Link Master der Firma Balluff durchgeführt.

Nach erfolgreicher Einbindung des IO-Link Masters in das PROFINET Netzwerk muss dem zugehörigen Port, an dem die Ventilinsel pysikalisch angeschlossen wird, ein Modul mit mindestens 10 Bytes Eingangsdaten und mindestens 5 Bytes Ausgangsdaten zugewiesen werden. Das erste mögliche Modul ist im nachfolgenden Beispiel: "IOL\_I/O\_16/16 byte"



|   |                                      |           | _ # #×  | Hardware catalog 🛋 🔳 |           |                              |      |         |
|---|--------------------------------------|-----------|---------|----------------------|-----------|------------------------------|------|---------|
|   | 🚽 Topology view                      | H Network | Options |                      |           |                              |      |         |
|   | Device overview                      |           |         |                      |           |                              |      |         |
| ^ | \Upsilon Module                      | Rack      | Slot    | l address            | Q address | ✓ Catalog                    |      |         |
|   | <ul> <li>BNIPNT527005Z040</li> </ul> | 0         | 0       |                      |           | <pre><search></search></pre> | irit | ini t   |
|   | ► PN-IO                              | 0         | 0 X1    |                      |           | Filter Profile:              | F    | (india) |
|   | IOL_I/O_16/16 byte_1                 | 0         | Port 0  | 015                  | 1025      | Head module                  | 1221 |         |
|   | Standard I/O_2                       | 0         | Port 1  |                      |           | - Module                     |      | -       |
|   | Standard I/O_3                       | 0         | Port 2  |                      | -         | - IOJ ink modules            |      |         |
|   | Standard I/O_4                       | 0         | Port 3  |                      |           |                              |      |         |
| - |                                      | 0         | 5       |                      |           | 10L_1/0_07/07 byte           |      |         |
| = |                                      | 0         | 6       |                      |           | 10L_1/0_02/02 byte           |      |         |
|   |                                      | 0         | 7       |                      |           | 10L_1/0_02/04 Byte           |      |         |
| _ |                                      | 0         | 8       |                      |           | 10L_10_02/08 byte            |      |         |
|   |                                      | 0         | 9       |                      |           | 10L_1/0_04/02 byte           |      |         |
|   |                                      | 0         | 10      |                      |           | 10L_1/0_04/04 Byte           |      |         |
|   |                                      | 0         | 11      |                      |           | 10L_1/0_04/32 byte           |      |         |
|   |                                      | 0         | 12      |                      |           |                              |      |         |
| - |                                      |           |         |                      |           |                              |      |         |
|   |                                      |           |         |                      |           |                              |      |         |
|   |                                      |           |         |                      |           | 10L 1/0 16/16 byte           |      |         |
|   |                                      |           |         |                      |           |                              |      |         |
|   |                                      |           |         |                      |           | IOL_I/O_224/24 byte          |      |         |
|   |                                      |           |         |                      |           | 10L 1/0 32/32 byte           |      | =       |
|   |                                      |           |         |                      |           | Inor_ino_52152 byte          |      |         |

Zuweisung eines IO-Link Modules für die Ventilinsel an einen Master Port

# 4.3 Parametrisierung der Ventilinsel

Die Parametrierung kann zum Beispiel über das Webinterface oder über eine Konfigurationssoftware des IO-Link Masters durchgeführt werden.

Die Konfiguration der Ventilinsel unterscheidet die Kategorien "gerätespezifische Parameter" und "kanalspezifische Parameter".

#### 4.3.1 Gerätespezifische Parameter

Hier können die folgenden Funktionen aktiviert/deaktiviert werden:

- Spannungsüberwachung der Ventilspannung 2L+ (VA)
- Spannungsüberwachung der Elektronik-/Systemspannung L+ (VS)
- S Kanaldiagnose der Ventilscheiben

Bei Aktivierung werden die Zustände der Spannungsüberwachung und der Kanaldiagnose über die jeweiligen LEDs angezeigt und IO-Link Events generiert.

| 1 Configuration of Device Diagnostics                            |    |         |   |   |
|------------------------------------------------------------------|----|---------|---|---|
| Device Diagnostics.Actuator voltage (UA) diagnostics             | W1 | Enabled | - | d |
| Device Diagnostics.Electronic/Sensor voltage (UB/US) diagnostics | rw | Enabled | + | d |
| Device Diagnostics.Valve channel diagnostics                     | rw | Enabled | * | d |

Konfiguration der gerätespezifischen Parameter

Werkseitig sind alle drei Überwachungsfunktionen aktiviert.



#### 4.3.2 Kanalspezifische Parameter

Für jedes einzelne Pilotventil (Kanal) auf der Ventilinsel können die folgenden Paramter konfiguriert werden:

- Aktivierung des Kanals
- S Aktivierung der Kanaldiagnose (Kurzschlusserkennung und Kabelbrucherkennung)
- Status bei Failsafe: Ersatzwertverhalten (Aus, An oder letzten gültigen Wert beibehalten)
- Schaltspielzähler (Cycle Counter) Limit 1: kann vom Benutzer gesetzt werden
- Schaltspielzähler (Cycle Counter) Limit 2: kann vom Benutzer gesetzt werden

| [-] Configuration Valve 1 Side 14       |    |                     |   |  |
|-----------------------------------------|----|---------------------|---|--|
| Channel.Activate Valve 1 Side 14        | rw | activate channel    | d |  |
| Channel.Diagnostics Valve 1 Side 14     | rw | disable diagnostics | d |  |
| Channel.Failsafe state Valve 1 Side 14  | rw | Off ·               | d |  |
| Channel.Counter Limit 1 Valve 1 Side 14 | rw | 0                   | d |  |
| Channel.Counter Limit 2 Valve 1 Side 14 | rw | 0                   | d |  |

Konfiguration der kanalspezifischen Paramter exemplarisch für Ventil1-14

Werkseitig sind alle kanalspezifischen Parameter deaktiviert.

# Anwendungsbeispiel Vorbeugende Wartung für den Parameter Schaltspielzähler pro Pilotventil (Kanal):

- Festlegen des Limit 1 als Warnschwelle (Warnung) pro Pilotventil (Kanal)
  - Prüfen, ob die gesetzte Warnschwelle auf bevorstehende Wartungsanforderung erreicht ist. Hinweis, dass bald eine Wartung ansteht
- Festlegen des Limit 2 als Wartungsaufforderung
  - Prüfen, ob die Wartung ansteht. Hinweis, dass das Ventil gewartet bzw. getauscht werden muss.

| Valve_ID | function_description | cycles | cyclespm | lim_value_amber | lim_yalue_red | ymb |
|----------|----------------------|--------|----------|-----------------|---------------|-----|
| V1_14    | SCENE 1 IN           | 0      | 0        | 150             | 200           | 1   |
| V1_12    | SCENE 1 OUT          | 1      | 1        | 150             | 200           | -   |
| V2_14    | SCENE 2 IN           | 1      | 1        | 150             | 200           | -   |
| V2_12    | SCENE 2 OUT          | 0      | 0        | 150             | 200           | -   |
| V3_14    | RESERVE2             | 0      | 0        | 150             | 200           | -   |
| V3_12    | RESERVE2             | 0      | 0        | 150             | 200           | -   |
| V4_14    | RESERVE3             | 0      | Ō        | 150             | 200           | ~   |
| V4_12    | RESERVE3             | 0      | 0        | 150             | 200           | ~   |
| V5_14    | RESERVE3             | 218    | 218      | 150             | 200           | 1   |
| V5_12    | RESERVE4             | 217    | 217      | 150             | 200           | *   |
| V6_14    | RESERVE5             | 215    | 215      | 150             | 200           |     |
| V6_12    | RESERVE5             | 216    | 216      | 150             | 200           | 1   |
| V7_14    | RESERVE6             | 217    | 217      | 150             | 200           | 1   |
| V7_12    | RESERVE6             | 217    | 217      | 150             | 200           | 1   |
| V8_14    | RESERVE7             | 215    | 215      | 150             | 200           | 1   |
| V8_12    | RESERVE7             | 215    | 215      | 150             | 200           | 1   |
| V9_14    | RESERVE8             | 218    | 218      | 150             | 200           | 1   |
| V9_12    | RESERVEB             | 217    | 217      | 150             | 200           | 1   |
| V10_14   | LAST_SLICE1          | 215    | 215      | 150             | 200           | 1   |
| V10_12   | LAST_SLICE2          | 216    | 216      | 150             | 200           | 1   |



### 4.4 Firmware-Version und Seriennummer

Über das TIA- Portal besteht die Möglichkeit, die aktuelle Firmware-Version und die Seriennummer der vorliegenden Ventilinsel zu ermitteln.

Wählen Sie die Netzansicht und drücken Sie den Button "Online verbinden".



Innerhalb der "Geräteübersicht" bitte auf den Port der Ventilinsel doppelklicken, damit in die Diagnoseansicht des Teilnehmers gewechselt werden kann.

Markieren Sie die Zeile "General / Allgemein", um detaillierte Herstellerinformationen wie die Firmware-Version oder die Seriennnummer zu erhalten.

| Labor_01 + Ungrouped de                  | evices + BNIPNT527005Z040 [BNI PNT-527-005-Z040] + IOL_I/O_16/16 byte_1 | _ # # X |
|------------------------------------------|-------------------------------------------------------------------------|---------|
|                                          |                                                                         |         |
| Diagnostics                              | General                                                                 |         |
| Diagnostic status<br>Channel diagnostics | Module                                                                  |         |
| Functions                                | Shoradesignation: IOL_I/O_16/16 byte                                    |         |
| 1 A                                      | Anicle number: VS18/26 IOL                                              |         |
|                                          | Hardwate: 0                                                             |         |
|                                          | Firmware: V0.5.0                                                        |         |
|                                          | Firmware expansions                                                     |         |
|                                          |                                                                         |         |
|                                          | Rackt                                                                   |         |
|                                          | Slot: 1                                                                 |         |
|                                          | Module information                                                      |         |
|                                          | Device name:                                                            |         |
|                                          | Nodule name: IOL_I/O_16/16 byte_1                                       |         |
|                                          | Plant designation:                                                      |         |
|                                          | Location ID:                                                            |         |
|                                          | Manufacturer information                                                |         |
|                                          | Menufacturer description:                                               |         |
|                                          | Senal number: 89055X0001                                                |         |
|                                          | Copyright entry:                                                        |         |
|                                          | Profile: 16#4E01                                                        |         |
|                                          | Profile details: 16#0000                                                |         |
|                                          |                                                                         |         |
|                                          |                                                                         |         |
|                                          |                                                                         |         |

Diese Informationen sind auch über das Webinterface oder das Konfigurationstool des IO-Link Masters sichtbar.



# 5 Prozessdaten

# 5.1 Ausgangsdaten

Es werden immer 5 Bytes für Ausgangsdaten reserviert. Je nach ausgewählter Konfiguration errechnen sich die tatsächlich benutzten Bytes wie folgt:

$$B(Bytes) = \frac{V * 2 + ((V * 2)MOD8)}{8}$$

 $V \in \{4,6,8,10,12,14,16,18,20\}.$ 



**Z.B.** für eine Ventilinsel mit 6 Ventilscheiben  

$$B = \frac{6 * 2 + (6 * 2)MOD8}{8} = \frac{12 + 12MOD8}{8} = \frac{16}{8} = 2$$
d.h. es werden 2 Bytes für eine Ventilinsel mit 6  
Ventilscheiben reserviert.



Das Bild zeigt eine VS Ventilinsel mit 6 Ventilscheiben



Die nachfolgende Abbildung zeigt die Zuordnung für eine maximale Konfiguration von 20 Ventilscheiben. Für jede Ventilscheibe werden zwei Bits reserviert - ein Bit für die Steuerseite 14 und ein Bit für die Steuerseite 12.

| bvte | Bit  |      |      |      |      |      |      | Gesamtanzahl der Ventilscheiben |   |   |   |    |    |    |    |    |    |
|------|------|------|------|------|------|------|------|---------------------------------|---|---|---|----|----|----|----|----|----|
| byte | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0                               | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
| 0    | V 04 |      | V 03 |      | V 02 |      | V 01 |                                 | V | V | V | V  | V  | V  | V  | V  | V  |
|      | S 12 | S 14                            | X | Х | X | Х  | Х  | Х  | Х  | Х  | X  |
| 1    | V 08 |      | V 07 |      | V 06 |      | V 05 |                                 |   | v | v | v  | v  | v  | v  | v  | v  |
|      | S 12 | S 14                            |   | Х | Х | Х  | Х  | X  | X  | Х  | Х  |
| 2    | V 12 |      | V 11 |      | V 10 |      | V 09 |                                 |   |   |   | v  | v  | v  | v  | v  | v  |
|      | S 12 | S 14                            |   |   |   | X  | Х  | Х  | Х  | Х  | Х  |
| 3    | V 16 |      | V 15 |      | V 14 |      | V 13 |                                 |   |   |   |    |    | v  | v  | v  | v  |
|      | S 12 | S 14                            |   |   |   |    |    | Х  | Х  | Х  | Х  |
| 4    | V 20 |      | V 19 |      | V 18 |      | V 17 |                                 |   |   |   |    |    |    |    | v  | v  |
| 4    | S 12 | S 14                            |   |   |   |    |    |    |    | Х  | Х  |

(V = Ventilscheibe, S = Magnetspulenseite, X = reservierte Bytes)

### 5.2 Ausgangsverhalten beim Einschalten und im Fehlerzustand

Beim Einschalten werden alle Ausgänge zurückgesetzt. Die Initialisierungsphase der Ventilinsel erkennen Sie durch das nacheinanderfolgende einmalige Aufblinken der LEDs IOL, SF, VS und VA (siehe auch Status LED Beschreibung in Kapitel 6.1).

Im Fehlerfall (unterbrochene Kommunikation oder als ungültig markierte Prozessausgangsdaten) schalten die Ausgänge / Ventilscheiben mit dem konfigurierten Ersatzwertverhalten.



# 5.3 Eingangsdaten

|       | Vent  | ilsche | iben |     |        |        |        |        | Bit    |        |        |        | Funktion                  |
|-------|-------|--------|------|-----|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------|
| 17-20 | 13-16 | 9-12   | 5-8  | 1-4 | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |                           |
|       |       | Byte#  |      |     |        |        |        |        |        |        |        |        |                           |
|       |       |        |      | 1   | V04-12 | V04-14 | V03-12 | V03-14 | V02-12 | V02-14 | V01-12 | V01-14 | Kurzschluß<br>/ Überlastg |
|       |       |        | 2    |     | V08-12 | V08-14 | V07-12 | V07-14 | V06-12 | V06-14 | V05-12 | V05-14 | Kurzschluß<br>/ Überlast  |
|       |       | 3      |      |     | V12-12 | V12-14 | V11-12 | V11-14 | V10-12 | V10-14 | V09-12 | V09-14 | Kurzschluß<br>/ Überlast  |
|       | 4     |        |      |     | V16-12 | V16-14 | V15-12 | V15-14 | V14-12 | V14-14 | V13-12 | V13-14 | Kurzschluß<br>/ Überlast  |
| 5     |       |        |      |     | V20-12 | V20-14 | V19-12 | V19-14 | V18-12 | V18-14 | V17-12 | V17-14 | Kurzschluß<br>/ Überlast  |
|       |       |        |      | 6   | V04-12 | V04-14 | V03-12 | V03-14 | V02-12 | V02-14 | V01-12 | V01-14 | Offener<br>Anschluß       |
|       |       |        | 7    |     | V08-12 | V08-14 | V07-12 | V07-14 | V06-12 | V06-14 | V05-12 | V05-14 | Offener<br>Anschluß       |
|       |       | 8      |      |     | V12-12 | V12-14 | V11-12 | V11-14 | V10-12 | V10-14 | V09-12 | V09-14 | Offener<br>Anschluß       |
|       | 9     |        |      |     | V16-12 | V16-14 | V15-12 | V15-14 | V14-12 | V14-14 | V13-12 | V13-14 | Offener<br>Anschluß       |
| 10    |       |        |      |     | V20-12 | V20-14 | V19-12 | V19-14 | V18-12 | V18-14 | V17-12 | V17-14 | Offener<br>Anschluß       |



# 6 Diagnose und Status-LEDs

# 6.1 Status LEDs



#### 6.1.1 Beschreibung der Status LEDs

| LED Bezeichnung | Beschreibung                                  |
|-----------------|-----------------------------------------------|
| IOL             | IO-Link Kommunikation                         |
| SF              | Systemfehler Status                           |
| VS              | Status Elektronik-Spannungsversorgung L+ (VS) |
| VA              | Status Ventil-Spannungsversorgung 2L+ (VA)    |

#### 6.1.2 Beschreibung der IO-Link LED (IOL)

| Link Status                   | LED Zustand   |
|-------------------------------|---------------|
| Keine Kommunikation vorhanden | ausgeschaltet |
| Kommunikation aktiv           | grün blinkend |

#### 6.1.3 Beschreibung der Systemfehler Status LED (SF)

| System Status                 | LED Zustand  |
|-------------------------------|--------------|
| Kein Systemfehler             | grün         |
| Fataler Systemfehler          | rot          |
| Fehler an einer Ventilscheibe | rot blinkend |

#### 6.1.4 Beschreibung der Elektronik-Spannungsversorgungs-Status LED (VS)

| Status                                     | LED Zustand  |
|--------------------------------------------|--------------|
| Spannung OK im Toleranzbereich von 18V-30V | grün         |
| Unterspannung                              | rot blinkend |
| Überspannung                               | rot          |



#### 6.1.5 Beschreibung der Ventil-Spannungsversorgungs-Status LED (VA)

| Status                                         | LED Zustand  |
|------------------------------------------------|--------------|
| Spannung OK im Toleranzbereich von 21,6V-26,4V | grün         |
| Unterspannung                                  | rot blinkend |
| Überspannung                                   | rot          |

# 6.2 Beschreibung der Status - LEDs für die Ventilscheiben



Ventilscheiben LEDs Seite 12

Der Schaltzustand der Ventilscheiben wird über die integrierte Status LED signalisiert. Jede Ventilscheibe hat je nach Ausführung bis zu 2 Status LEDs für die Seite 14 bzw. Seite 12. Die monostabilen Ventilscheiben haben nur eine LED. Es handelt sich um grüne monocolor LEDs.

| Status                   | LED Zustand |
|--------------------------|-------------|
| Ventil nicht angesteuert | aus         |
| Ventil angesteuert       | grün        |



### 6.3 Diagnose

Die Diagnose der Ventilinsel unterscheidet die Kategorien "gerätespezifische Diagnose" und "kanalspezifische Diagnose".

#### 6.3.1 Gerätespezifische Diagnose

Die gerätespezifische Diagnose umfasst die folgenden Paramter:

- Betriebsstundenzähler [h]
- Status der Elektronik-Systemspannung VS (Über- / Unterspannung, Spannung OK)
- Status der Ventilspannung VA (Über- / Unterspannung, Spannung OK)

| ) Device Diagnostics        |    |                        |   |   |
|-----------------------------|----|------------------------|---|---|
| Operating Hours             | ro | 0,01                   | d | h |
| Supply.Voltage status UB/US | o  | UB/US voltage in range | d |   |
| Supply.Voltage status UA    | ro | UA undervoltage        | d |   |

Gerätediagnose

#### 6.3.2 Kanalspezifische Diagnose

Für jedes einzelne Pilotventil (Kanal) auf der Ventilinsel stehen die folgenden Diagnoseparamter zur Verfügung:

- Absolute Anzahl der getätigten Schaltspiele.
- Überlast-Überwachung des Kanals
- S Kabelbruch-Überwachung am Kanal

| Cycle counter.Switching cycles Valve 1 Side 14 | 10 | 0  | b |
|------------------------------------------------|----|----|---|
| Diagnostics.Overload Valve 1 Side 14           | 01 | OK | đ |
| Diagnostics.Openload Valve 1 Side 14           | to | OK | d |
| Cycle counter.Switching cycles Valve 1 Side 12 | 01 | 0  | d |
| Diagnostics. Overload Valve 1 Side 12          | 10 | ОК | d |
| Diagnostics.OpenIoad Valve 1 Side 12           | 01 | ΟΚ | а |

Kanaldiagnose des ersten Ventils



# 6.4 Online-Diagnose mit Siemens TIA Portal

Die Diagnose des Netzwerks oder von Geräten wird mit dem Betätigen des Buttons "Online verbinden" gestartet.

#### 6.4.1 Kanaldiagnose des IO-Link Masters

Bei anstehender Moduldiagnose der Ventilinsel (z. B. Unter- / Überspannung) ist das Modul in der "Geräteübersicht" mit einem roten Symbol gekennzeichnet.



Online Gerätediagnose

Durch Doppelklick auf das Symbol wechseln Sie in die Diagnoseansicht des Teilnehmers. Markieren Sie die Zeile "Diagnosestatus", um detaillierte Informationen zur anstehenden Diagnose zu erhalten.

| Channel diagnostics                                                                                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Channel type Channel no. Error<br>- 1 Undervoltage                                                                                      |  |
|                                                                                                                                         |  |
|                                                                                                                                         |  |
| Help on selected diagnostics row<br>Description: The supply voltage is below the tolerance limit.<br>Solution: Change the power supply. |  |
| sources enouge are porcer supply.                                                                                                       |  |

**Online Kanaldiagnose eines IO-Link Master Ports** 



### 6.5 Diagnose mit einem IO-Link Master Konfigurationstool

Die Diagnosedaten können über das Webinterface oder das Konfigurationstool des IO-Link Masters ausgelesen werden. Dazu ist ein Upload der Device Paramter vom Device in das Tool notwendig.

Nachfolgendes Bild zeigt exemplarisch, wie eine etwaige Unterspannung der Ventil-Spannungversorgung 2L+ (VA+) im Konfigurationstool des Masters dargestellt wird.

| 🔚 🕂 🕈 🕈 block write mode 🔹 🔹                                                  |     |                                               |       |      |  |
|-------------------------------------------------------------------------------|-----|-----------------------------------------------|-------|------|--|
| Common Process Data Identification Observation Parameter Diagnosis Generic 10 | DD  |                                               |       |      |  |
| Name                                                                          | R/W | Value                                         | State | Unit |  |
| Device Status                                                                 | TO  | Device is OK                                  | đ     |      |  |
| Detailed Device Status [1]                                                    | oı  | Secondary supply voltage fault (Port Class B) | đ     |      |  |
| Detailed Device Status [2]                                                    | to  |                                               | đ     |      |  |
| Detailed Device Status [3]                                                    | oı  |                                               | đ     | 1    |  |
| Detailed Device Status [4]                                                    | oı  |                                               | đ     |      |  |
| Device Diagnostics                                                            |     |                                               |       |      |  |
| Operating Hours                                                               | o   | 0,00                                          | đ     | h    |  |
| Supply. Voltage status UB/US                                                  | ro  | UB/US voltage in range                        | б     |      |  |
| Supply.Voltage status UA                                                      | 01  | UA undervoltage                               | đ     |      |  |
| Channel Diagnostics Valve 1                                                   |     |                                               |       |      |  |
| Cycle counter.Switching cycles Valve 1 Side 14                                | ro  | 0                                             | đ     |      |  |
| Diagnostics.Overload Valve 1 Side 14                                          | oı  | OK.                                           | đ     |      |  |
| Diagnostics.Openload Valve 1 Side 14                                          | 01  | OK.                                           | đ     |      |  |
| Cycle counter.Switching cycles Valve 1 Side 12                                | 01  | 0                                             | đ     |      |  |
| Diagnostics.0verload Valve 1 Side 12                                          | ro  | OK.                                           | đ     |      |  |
| Diagnostics. OpenIoad Valve 1 Side 12                                         | oı  | OK .                                          | đ     |      |  |
| Channel Diagnostics Valve 2                                                   |     |                                               |       |      |  |
| Cycle counter.Switching cycles Valve 2 Side 14                                | oı  | 0                                             | đ     |      |  |
| Diagnostics.0verload Valve 2 Side 14                                          | то  | OK.                                           | ď     |      |  |
| Diagnostics. OpenIoad Valve 2 Side 14                                         | o   | ОК                                            | Б     |      |  |
| Cycle counter.Switching cycles Valve 2 Side 12                                | 01  | 0                                             | đ     |      |  |
| Diagnostics. Dverload Valve 2 Side 12                                         | 01  | OK.                                           | đ     |      |  |
| Diagnostics. Openload Valve 2 Side 12                                         | ro  | OK .                                          | đ     |      |  |
| Channel Diagnostics Valve 3                                                   |     |                                               |       |      |  |
| Cycle counter.Switching cycles Valve 3 Side 14                                | TO  | 0                                             | đ     |      |  |
| Diagnostics. Diverload Valve 3 Side 14                                        | 01  | OK                                            | 6     |      |  |

Darstellung der Diagnose im Konfigurationstool



# 7 IO-Link Fehlercodes

| IO-Link Event<br>code | Fehlerbeschreibung                                     | Zugehörige LED-Anzeige |
|-----------------------|--------------------------------------------------------|------------------------|
| (hexadezimal)         |                                                        |                        |
| 0x0000                | OK, keine Fehler                                       | "SF" LED, grün         |
| 0x7710                | Pilotventil, Kurzschluss                               | "SF" LED, rot blinkend |
| 0x7700                | Pilotventil, Unterbrechung                             | "SF" LED, rot blinkend |
| 0x5111                | Unterspannung Elektronik- Spannungsversorgung L+ (VS+) | "VS" LED, rot blinkend |
| 0x5110                | Überspannung Elektronik- Spannungsversorgung L+ (VS+)  | "VS" LED, rot          |
| 0x5112                | Unterspannung Ventil- Spannungsversorgung 2L+ (VA+)    | "VA" LED, rot blinkend |
| 0x5112                | Überspannung Ventil- Spannungsversorgung 2L+ (VA+)     | "VA" LED, rot          |

# 8 Eigenschaften IO-Link Schnittstelle

| Details            |                     | Kommentar |
|--------------------|---------------------|-----------|
| Protokoll          | IO-Link Version 1.1 |           |
| Baud Rate          | COM 3 (230.4 kBaud) |           |
| Min. Zykluszeit    | 5ms                 |           |
| IO-Link Port Class | Class B             |           |
| Sprache IODD       | EN                  |           |



# 9 Erweiterung der Ventilinsel

Die Ventilinselkonfiuration kann bei VS18 und VS26 Ventilinseln über die jeweiligen 2er und 4er Erweiterungsplatinen - wie im nachfolgenden Kapitel beschrieben - erweitert werden.

Folgende Erweiterungsplatinen stehen Ihnen zur Verfügung:





VS2672762-KG00 / VS1872262-KF00 4-fach

VS2672764-KG00 / VS1872264-KF00 2-fach

# 9.1 Übersicht der möglichen Kombinationen

Die nachfolgende Abbildung zeigt eine Übersicht der empfohlenen Kombinationen bestehender Platinen.





#### Hinweis:

Grundsätzlich ist es möglich die 2-fach Erweiterungsplatine (VS2672764-KG00 / VS1872264-KF00) an jeder Position zu nutzen empfohlen ist es jedoch die oben aufgeführe Kombination zu nutzen.

Bei speziellem Bedarf des Einsatzes der 2-fach Erweiterungsplatine (VS2672764-KG00 / VS1872264-KF00) kontaktieren Sie bitte unseren technischen Kundensupport.

Das folgende Kapitel veranschaulicht Ihnen die empfohlene Kombinationen der Platinen.

# 9.2 Ventilinsel mit 2 Ventilscheiben







# 9.3 Ventilinsel mit 4 Ventilscheiben





# 9.4 Ventilinsel mit 6 Ventilscheiben







# 9.5 Ventilinsel mit 8 Ventilscheiben





# 9.6 Ventilinsel mit 10 Ventilscheiben







# 9.7 Ventilinsel mit 12 Ventilscheiben



# 9.8 Ventilinsel mit 14 Ventilscheiben







# 9.9 Ventilinsel mit 16 Ventilscheiben





# 9.10 Ventilinsel mit 18 Ventilscheiben







# 9.11 Ventilinsel mit 20 Ventilscheiben



### 9.12 Anfahr- und Entlastungsventil

Das Anfahr- und Entlastungsventil ist nur für die VS26 Serie verfügbar.

Maximal können vier Anfahr- und Entlastungsventile pro Ventilinsel konfiguriert und eingesetzt werden. Pro Anfahr- und Entlastungsventil (VS2672530-KG00) werden jeweils zwei Null-Brücken-Platinen (VS2672763-KG00) benötigt.



VS2672530-KG00



VS2672763-KG00

Es können bis zu vier Anfahr- und Entlastungsventile an gerader Position konfiguriert werden (0, 2, 4, ...20, 22, 24).

Untenstehende einige Beispiel-Konfigurationen mit Anfahr- und Entlastungsventil. Nur Ventilscheiben, Blindplatten und das Modul für zusätzliche Druckeinspeisung / Entlüftung werden bei der Adresszuweisung (Bit-Belegung) berücksichtigt und gezählt.



**Hinweis:** Für die unten aufgeführten Konfigurationen können lediglich nur die Erweiterungsplatinen mit der Artikelnummer VS2672764-KG00 verwendet werden.





# **10** Elektrische Daten

| Details                                    |                                     | Kommentar                                                                                       |
|--------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------|
| Spannungsbereich Ventile (VA+):            | 24VDC +/-10%                        | PELV                                                                                            |
| Spannungsbereich Elektronik (VS+):         | 24VDC +/-30%                        | PELV                                                                                            |
| Stromverbrauch max:                        | VA: 25mA + n x 70mA<br>VS: < 250mA  | n = Anzahl geschalteter Ventile                                                                 |
| Spannungen voneinander galvanisch isoliert | Ja                                  |                                                                                                 |
| Verpolschutz                               | VS+, VA+                            |                                                                                                 |
| Überstromschutzorgan VS, VA                | irreversibel                        | Schutz vor thermischer<br>Überlastung, d.h. Schutz<br>vor Überlaststrom und<br>Kurzschlussstrom |
| PE/FE-Anbindung                            | Ja                                  | Über Anschlussmodul Gehäuse                                                                     |
| Elektrischer Anschluss                     | M12 / 5-polig / A-kodiert / Stecker | M12-1: L+ (VS+)<br>M12-2: 2L+ (VA+)<br>M12-3: L- (VS GND)<br>M12-4: C/Q<br>M12-5: 2M (VA GND)   |

08/2020



# 11. Technische Daten

# 11.1 Technische Daten VS18 und VS26

#### Betriebsmedium:

Gefilterte Druckluft (40 µm), geölt oder ungeölt

#### Wirkungsweise: VS18G / VS26G: Hardgedichtete Ventile, elektropneumatisch betätigt

VS18S / VS26S: Weichgedichtete Ventile, elektropneumatisch betätigt

#### Betriebsdruck:

Maximaler Betriebsdruck 10 bar VS18S / VS26S Baureihe und VS18G / VS26G Baureihe elektropneumatisch betätigt mit interner Steuerluft 16 bar VS18G / VS26G Baureihe elektropneumatisch betätigt mit externer Steuerluft

#### Umgebungstemperatur:

-15°C bis +50°C

#### Fluidtemperatur:

-5°C bis +50°C (bei Temperaturen unter +2°C bitte Luftbeschaffenheit beachten)

| Material:<br>Gehäuse/Grundplatte: | Aluminium-Druckguss                        |
|-----------------------------------|--------------------------------------------|
| Kolbenschieber hartgedichtet:     | Aluminium hartanodisiert, PTFE beschichtet |
| Kolbenschieber weichgedichtet:    | Aluminium mit HNBR-Dichtungen              |
| Kunststoffteile:                  | POM, PA, PPA                               |
| Enddeckel und Schrauben:          | Stahl, verzinnt                            |
| Feder:                            | Edelstahl                                  |
| Zwischenplatten:                  | Aluminium, PA                              |
| Elektische Kontakte:              | Messing, verzinnt/vergoldet                |
| Leiterplatten:                    | Glasepoxy                                  |



# 11.2 Technische Daten VS18

Anschlüsse 2 + 4: G1/8, NPTF 1/8, PIF 6 mm, PIF 8 mm, PIF ½

Anschlüsse 1 + 3 + 5: G1/4

Ventile: ISO 15407-2 – Größe 18 mm

#### Durchfluss:

| Serie | Funktion | Q <sub>N</sub> | Cv              | Kv     |
|-------|----------|----------------|-----------------|--------|
|       |          | [L/min]        | [US<br>Gal/min] | [m³/h] |
| VS18G | 5/2      | 550            | 0,56            | 0,48   |
| VS18G | 5/3      | 550            | 0,56            | 0,48   |
| VS18S | 2x2/2    | 550            | 0,56            | 0,46   |
| VS18S | 2x3/2    | 600            | 0,61            | 0,52   |
| VS18S | 5/2      | 650            | 0,66            | 0,57   |
| VS18S | 5/3      | 650            | 0,66            | 0,57   |

# 11.3 Technische Daten VS26

Anschlüsse 2 + 4: G1/4, NPTF 1/4, PIF 10 mm, PIF 8 mm, PIF 3/8

**Anschlüsse 1 + 3 + 5**: G3/8

#### Ventile:

ISO 15407-2 – Größe 26 mm

Durchfluss:

| Serie | Funktion | Q <sub>N</sub> | Cv              | Kv     |
|-------|----------|----------------|-----------------|--------|
|       |          | [L/min]        | [US<br>Gal/min] | [m³/h] |
| VS26G | 5/2      | 1000           | 1,02            | 0,87   |
| VS26G | 5/3      | 1000           | 1,02            | 0,87   |
| VS26S | 2x2/2    | 1150           | 1,17            | 1,00   |
| VS26S | 2x3/2    | 1250           | 1,27            | 1,09   |
| VS26S | 5/2      | 1350           | 1,37            | 1,18   |
| VS26S | 5/3      | 1350           | 1,37            | 1,18   |



### Kundensupport

Email-Kontaktadresse: Anfragen.Ventilteam@imi-precision.com

#### **Norgren GmbH**

Werk Fellbach Stuttgarter Straße 120 70736 Fellbach Tel: +49 711 5209 -0

Die angegebenen Daten dienen allein der Produktbeschreibung.

Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet warden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Bitte beachten Sie, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

© Dieses Dokument sowie die Daten, Spezifikationen und andere Informationen, sind ausschließlich Eigentum der Norgren GmbH. Ohne Genehmigung der Norgren GmbH darf es nicht vervielfältigt und an Dritte weitergegeben werden.

Änderungen vorbehalten.

Gedruckt in Deutschland

-

Bestellnummer: 750376300000005

DE