

Operation & Service Manual Valve Island VS18 / VS26 with IO-Link interface

Change history:

The Change history reflects all changes of the Operation & Service Manual, which were done after the initial release

Index	Chapter	Description of changes	Date	Name
Α	All	Setup of initial version	20/08/2020	R.Bennett

This Operation & Service Manual makes no claims of being complete as it does not cover all variants of the VS18 / VS26 valve islands series at the moment.

Therefore this document is subject to extensions or changes.

Content

1	Ab	oout this documentation	6
2	lm	nportant hints	7
	2.1	Grounding and equipotential bonding	7
	2.2	Use of an IO-Link master with port class B	7
	2.3	Note with regards to delivery status in relation to expansion state	8
	2.4	Intermediate supply/exhaust module (ISEM)	8
	2.5	ATEX Valve Islands	8
3	Ele	ectrical connections of the VS18 and VS26 Valve Islands	g
	3.1	IO-Link Connection (Port Class B)	g
4	Co	ommissioning	10
	4.1	IODD (IO Device Description)	10
	4.2	Configuration of an IO-Link master port in the TIA Portal	10
	4.3	Parameterrization of the Valve Island	11
	4.3	3.1 Device-specific parameters	11
	4.3	3.2 Channel-specific parameters	12
	4.4	Firmware version and serial number	13
5	Pr	ocess data	14
	5.1	Output data	14
	5.2	Output behavior when switching on and in error status	15
	5.3	Input data	16
6	Dia	agnostics and LEDs	17
	6.1	Status LEDs	17
	6.	1.1 Status LEDs description	17
	6.	1.2 Description of the IO-Link LED (IOL)	17
	6.	1.3 Description of the system error status LED (SF)	17
	6.	1.4 Description of the electronics power supply status LED (VS)	17
	6.	1.5 Description of the valve power supply status LED (VA)	18
	6.2	Description of the status LEDs for the valve slices	18
	6.3 [Diagnosis	19
	6.3	3.1 Device-specific daignosis	19
	6.3	3.2 Channel-specific diagnosis:	19
	6.4	Online diagnosis with Siemens TIA Portal	20

	6	6.4.1 Channel diagnosis of the IO-Link master	20
	6.5	5 Diagnostics with an IO-Link master configuration tool	21
7	10	IO-Link error codes	22
8	P	Properties of the IO-Link interface	22
9	Е	Extension of the valve island	23
	9.1	Overview - preferred combinations SPI boards	23
	9.2	2 Valve island with 2 stations	24
	9.3	3 Valve island with 4 stations	25
	9.4	4 Valve island with 6 stations	25
	9.5	5 Valve island with 8 stations	26
	9.6	6 Valve island with 10 stations	26
	9.7	7 Valve island with 12 stations	27
	9.8	8 Valve island with 14 stations	27
	9.9	9 Valve island with 16 stations	28
	9.1	10 Valve island with 18 stations	28
	9.1	11 Valve island with 20 stations	29
1(0	Electrical data	31
1	1.	Technical data	32
	11.	I.1 Technical data VS18 und VS26	32
	11.	I.2 Technical data VS18	33
	11.3	I.3 Technical data VS26	33

Contact information

Norgren GmbH

Site Fellbach Stuttgarter Straße 120 70736 Fellbach

Tel: +49 711 5209-0

1 About this documentation

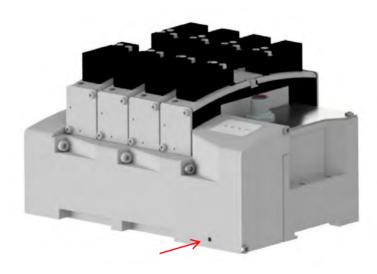
This Operation & Service Manual contains the information to set up and operate the VS18 / VS26 valve island with IO-Link interface and to detect and resolve problems.

Note:

In addition to the specific information for the IO-Link variants, all data sheets for the VS18 / VS26 valve island series are applicable and remain valid. The difference between the both variants consists of the sizes of valves and the resulting maximum flow rate. All electrical connections and parameterization are the same for both variants.

Refer also to the data sheets on the following web links:

- VS26: http://cdn.norgren.com/pdf/de_5_1_350_VS26.pdf
- ⇒ VS18: http://cdn.norgren.com/pdf/de_5_1_250_VS18.pdf



2 Important hints

2.1 Grounding and equipotential bonding

Proper grounding and equipotential bonding are very important to protect against electromagnetic interferences in IO-Link networks. In order to reduce potential impact, grounding of the IO-Link cable screen should be done at both ends of every cable (i.e. at each device). Equipotential bonding ensures that the ground potential is identical throughout the entire IO-Link network and is essential to avoid equipotential bonding currents, which could otherwise flow through the IO-Link cable screen.

Ground connection needs to be established using the M4 thread on the rear of the connection module. Its location shows the red arrow on the following picture. Cross section of the used cable should be at least 1,5 mm²

2.2 Use of an IO-Link master with port class B

When connecting the VS18 or VS26 IO-Link valve islands, please note that an IO-Link master with port class B is required, which has on pin 2 and pin 5 of the M12 connector an additional, galvanically isolated supply voltage which can carry the maximum current needed for the used number of valve slices. The maximum current required for a specific configuration can be calculated depending on the existing valve solenoids according to the information in chapter 10.

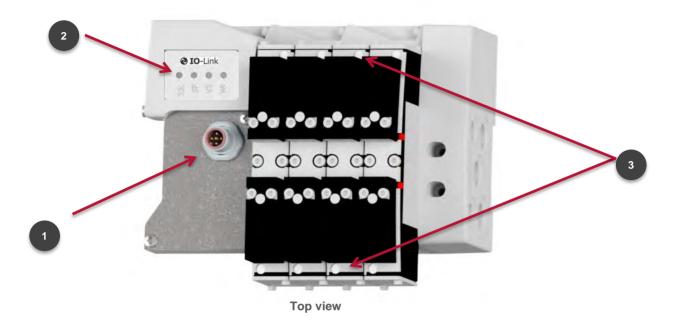
2.3 Note with regards to delivery status in relation to expansion state

If changing the delivery status of the valve island in relation to the expansion stage - adding / reducing valve slices - it is necessary to switch the valve island completely free of voltage beforehand. It is recommended to remove the power supply plug. After adding / reducing valve slices, the new expansion stage must be initialized. The number of valve slices is determined during the power-up initialization. It is absolutely essential that the electronics power supply (VB) and the valve power supply (VA) are pressent during this initialization.

2.4 Intermediate supply/exhaust module (ISEM)

In cases where the channel diagnostics is activated on the valve island, the channel diagnostics setting should be disabled at the position of each ISEM. This needs to be done in order to avoid any misleading failure indication due to missing electronic components in the ISEM.

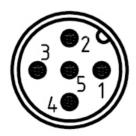
2.5 ATEX Valve Islands


Please refer to the ATEX Installation Instructions (750376700000000) for IO-Link valve islands when used in Ex-environment.

You can access the ATEX Installation Instructions for IO-Link valve islands following the web link:

https://www.norgren.com/uk/en/technical-support/installation-maintenance-instructions/valves

3 Electrical connections of the VS18 and VS26 Valve Islands



1. IO-Link connection (Port Class B)

(Male M12, 5-pin, A-coded)

- 2. Valve Island status LEDs
- 3. Valve status LEDs

3.1 IO-Link Connection (Port Class B)

9

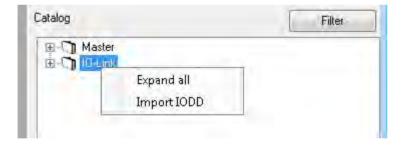
M12 / 5-pin / connector / A-encoded						
Pin Nr.	Signal	Function				
1	L+	Electronic Power Supply (VS+)				
2	2L+	Valve Power Supply (VA+)				
3	L-	Electronic Power Supply (VS GND)				
4	C/Q	IO-Link communication				
5	2M	Valve Power Supply (VA GND)				

08/2020

4 Commissioning

Note: The procedure for installing an IO-Link device depends on the configuration method. Please also read the manual of the IO-Link master.

Note: All examples in this document were created with the Siemens TIA Portal V15 and a Balluff IO-Link master. The example configurations of the valve island were created using the TMGTE IO-Link Device Tool.

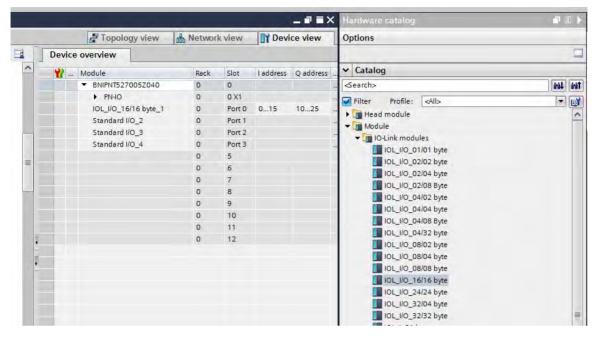

4.1 IODD (IO Device Description)

The IODD file contains all information on the communication properties, the device parameters, identification data, process data and diagnostic data of the valve island.

https://www.norgren.com/uk/en/technical-support/software

The configuration tools of the master vendors' are able to read an IODD and to display (partly graphically) the described device.

To do this, the IODD must be imported into the configuration tool of the master


Import of the IODD into the configuration tool of the IO-Link master

4.2 Configuration of an IO-Link master port in the TIA Portal

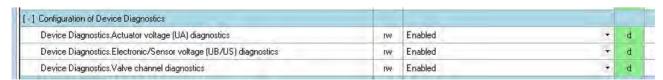
The assignment of the valve island to an IO-Link port is carried out here as an example on a PROFINET IO-Link master from Balluff. After successful integration of the IO-Link master in the PROFINET network, the associated port to which the valve island is physically connected must be assigned a module with at least 10 bytes of input data and at least 5 bytes of output data.

The first possible module is in the following example: "IOL_I / O_16 / 16 byte"

Assignment of an IO-Link module for the valve island to a master port

4.3 Parameterrization of the Valve Island

The parameterization can be carried out, for example, via the web interface or via configuration software of the IO-Link master.


The configuration of the valve island distinguishes between the categories "device-specific parameters" and "channel-specific parameters".

4.3.1 Device-specific parameters

The following functions can be activated / deactivated here:

- ⇒ Voltage monitoring of the valve power supply 2L+ (VA)
- ⇒ Voltage monitoring of the electronics / system power supply L+ (VS)
- Channel diagnosis of the valve slices

When activated, the states of voltage monitoring and channel diagnostics are displayed via the respective LEDs and IO-Link events are generated.

configuration of the device-specific parameters

Default configuration: All three monitoring functions are enabled.

4.3.2 Channel-specific parameters

The following parameters can be configured for each individual coil (channel) on the valve island:

- Activation of the channel
- Activation of the channel diagnosis (short circuit and wire break detection)
- Status at Failsafe: Substitute value behavior (clear output, set output or freeze output)
- Cycle Counter limit 1: can be set by the user
- Cycle Counter limit 2: can be set by the user

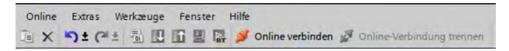
[-] Configuration Valve 1 Side 14					
Channel.Activate Valve 1 Side 14	rw	activate channel	•	d	
Channel.Diagnostics Valve 1 Side 14	rw	disable diagnostics	•	d	
Channel.Failsafe state Valve 1 Side 14	rw	Off	•	d	
Channel.Counter Limit 1 Valve 1 Side 14	rw	0		d	
Channel.Counter Limit 2 Valve 1 Side 14	rw	0		d	

configuration of the device-specific paramters exemplary for valve 1-14

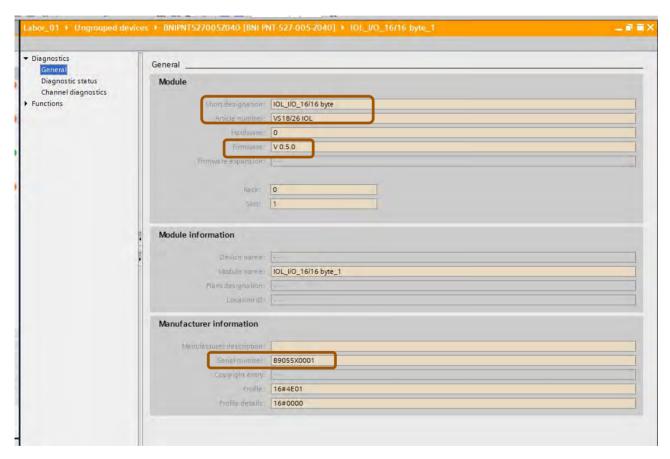
Default configuration: All channel-specific diagnostic features are disabled

Example Predictive Maintenance for the parameter counter switching cycles per solenoid (channel):

- ☐ Definition of limit 1 as a warning threshold per solenoid (channel)
 - Checking wether the set waring threshold for an imminent maintenance request has been reached. Notification, that maintenance is due soon
- ☐ Definition of limit 2 as a maintenance request
 - Checking whether maintenance is due. Notification, that the valve must be serviced or replaced


Valve_ID	function_description	cycles	cyclespm	llm_value_amber	lim_value_red	ymt
V1_14	SCENE 1 IN	0	0	150	200	*
V1_12	SCENE 1 QUT	1	1	150	200	4
V2_14	SCENE 2 IN	1	1	150	200	×
V2_12	SCENE 2 OUT	0	.0	150	200	4
V3_14	RESERVE2	0	0	150	200	•
V3_12	RESERVE2	0	0	150	200	*
V4_14	RESERVE3	0	0	150	200	×
V4_12	RESERVE3	0	0	150	200	4
V5_14	RESERVE3	218	218	150	200	1
V5_12	RESERVE4	217	217	150	200	1
V6_14	RESERVE5	215	215	150	200	1
V6_12	RESERVE5	216	216	150	200	1
V7_14	RESERVE6	217	217	150	200	1
V7_12	RESERVE6	217	217	150	200	1
V8_14	RESERVE7	215	215	150	200	1
V8_12	RESERVE7	215	215	150	200	1
V9_14	RESERVE8	218	218	150	200	1
V9_12	RESERVE8	217	217	150	200	1
V10_14	LAST_SLICE1	215	215	150	200	1
V10_12	LAST_SLICE2	216	216	150	200	1

4.4 Firmware version and serial number


Via Siemens TIA Portal it is possible to determine the current firmware version and the serial number of the Valve Island.

Select the network view and press the "Connect online" button.

Double-click within the "device overview" on the port of the Valve Island. That leads you to the device diagnostics view.

Mark the line "General / General" to obtain detailed manufacturer information such as the firmware version or the serial number.

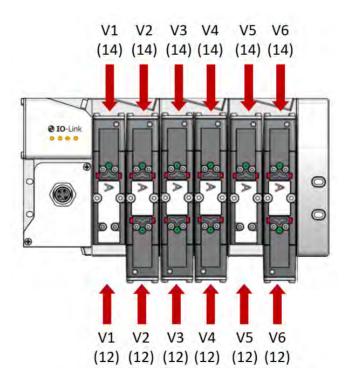
This information is also visible via the web interface or the configuration tool of the IO-Link master.

5 Process data

5.1 Output data

5 bytes are always reserved for output data. Depending on the selected conformation, the used bytes are calculated as follows:

$$B(Bytes) = \frac{V * 2 + ((V * 2)MOD8)}{8}$$


 $V \in \{4,6,8,10,12,14,16,18,20\}.$

Whereby 'V' = number of valve slices and 'MOD' = modular operator

E.g. for a valve island with 6 valve slices

$$B = \frac{6 * 2 + (6 * 2)MOD8}{8} = \frac{12 + 12MOD8}{8} = \frac{16}{8} = 2$$

i.e. there are 2 bytes reserved for 6 valve slices

The picture shows a VS valve island with 6 valve slices

The table below shows the assignment for maximum configuration of 20 valve slices. For every valve slice two bits will be reserved – one bit for solenoid 14 and one bit for solenoid 12.

buto	Bit								Total number of valve slices								
byte	7	6	5	4	3	2	1	0	4	6	8	10	12	14	16	18	20
0	V 04		V 03		V 02		V 01		V		.,	.,	.,		.,	.,	.,
	S 12	S 14	Х	X	X	X	X	X	Х	X	X						
1	V 08		V 07		V 06		V 05			X	X	X	X	X	X	Х	X
	S 12	S 14		X	^	^	^	^	^	^	X						
2	V 12		V 11		V 10		V 09					X	X	X	X	X	X
	S 12	S 14				^	^	Α	^	^	^						
3	V 16		V 15		V 14		V 13							X	Х	X	X
	S 12	S 14						^	^	^	^						
4	V 20		V 19		V 18		V 17									X	X
	S 12	S 14								^	^						

(V = Valve no, S = Solenoid side, X = Bytes reserved)

5.2 Output behavior when switching on and in error status

At power up all outputs are cleared. The initialization phase of the valve island is indicated by a one by one activation of the status LEDs IOL, SF, VS and VA (see also status LED description in chapter 6.1).

In case of fault condition (interrupted communication or process output data marked as invalid), the outputs switch to those values which are configured in the "substitute behavior" parameter set.

5.3 Input data

	Valv	e stat	ions	Bit								function	
17-20	13-16	9-12	5-8	1-4	7	6	5	4	3	2	1	0	
		Byte#											
				1	V04-12	V04-14	V03-12	V03-14	V02-12	V02-14	V01-12	V01-14	Short circuit / overload
			2		V08-12	V08-14	V07-12	V07-14	V06-12	V06-14	V05-12	V05-14	Short circuit / overload
		3			V12-12	V12-14	V11-12	V11-14	V10-12	V10-14	V09-12	V09-14	Short circuit / overload
	4				V16-12	V16-14	V15-12	V15-14	V14-12	V14-14	V13-12	V13-14	Short circuit / overload
5					V20-12	V20-14	V19-12	V19-14	V18-12	V18-14	V17-12	V17-14	Short circuit / overload
				6	V04-12	V04-14	V03-12	V03-14	V02-12	V02-14	V01-12	V01-14	Open circuit
			7		V08-12	V08-14	V07-12	V07-14	V06-12	V06-14	V05-12	V05-14	Open circuit
		8			V12-12	V12-14	V11-12	V11-14	V10-12	V10-14	V09-12	V09-14	Open circuit
	9				V16-12	V16-14	V15-12	V15-14	V14-12	V14-14	V13-12	V13-14	Open circuit
10					V20-12	V20-14	V19-12	V19-14	V18-12	V18-14	V17-12	V17-14	Open circuit

6 Diagnostics and LEDs

6.1 Status LEDs

6.1.1 Status LEDs description

LED Name	Description
IOL	IO-Link communication
SF	System error status
VS	Electronics power supply status L+ (VS+)
VA	Status valve power supply 2L+ (VA+)

6.1.2 Description of the IO-Link LED (IOL)

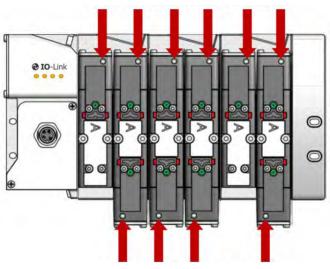
IO-Link Status	LED State		
There is no communication	switched off		
Communication active	flashing green		

6.1.3 Description of the system error status LED (SF)

System Status	LED State
No system error	green
Fatal system error	red
Error at valve slice	flashing red

6.1.4 Description of the electronics power supply status LED (VS)

Status	LED State
Voltage OK within the tolerance range of 18V-30V	green
Undervoltage	flashing red
Overvoltage	red



6.1.5 Description of the valve power supply status LED (VA)

Status	LED State
Voltage OK in within tolerance range of 21.6V-26.4V	green
Undervoltage	flashing red
Overvoltage	red

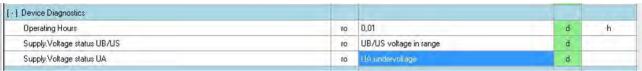
6.2 Description of the status LEDs for the valve slices

Each valve slice has one or two separate status LEDs depending on its configuration, which indicate the control states "14" and "12" for the corresponding pilot valve solenoids.

Monostable valve slices are equipped with one LED. These are green monocolor LEDs.

Valve slice LEDs side 12

Status	LED State
Valve not powered	off
Valve powered	on

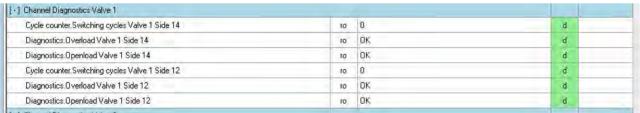

6.3 Diagnosis

The diagnosis of the valve island distinguishes between the categories "device-specific diagnosis" and "channel-specific diagnosis".

6.3.1 Device-specific daignosis

The device-specific diagnosis includes the following parameters:

- Operating hours counter [h]
- Status of the electronics system voltage VS (over- / undervoltage, voltage OK)
- ⇒ Status of the valve voltage VA (over / undervoltage, voltage OK)



Device Specific Diagnostics

6.3.2 Channel-specific diagnosis:

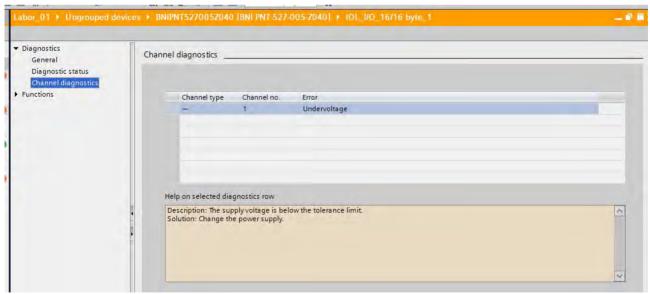
For each solenoid (channel) on the valve island following diagnostic parameters are available:

- Absolute number of switching operations.
- Overload monitoring of the channel
- Wire break monitoring on the channel

Channel diagnosis of the first valve

6.4 Online diagnosis with Siemens TIA Portal

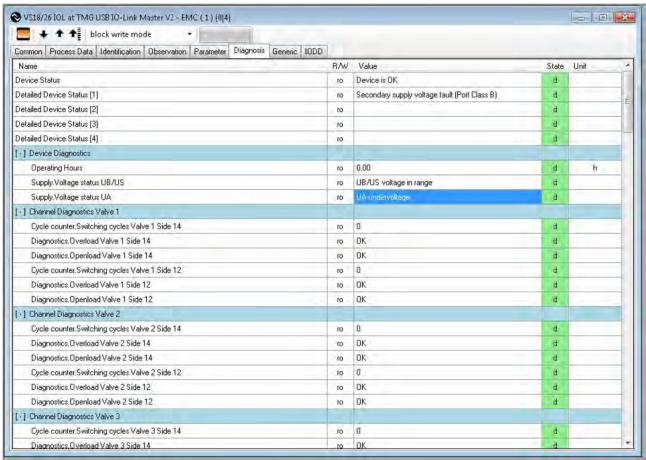
Diagnostics of the network or devices is started by pressing the "Connect online" button.


6.4.1 Channel diagnosis of the IO-Link master

In case of pending module diagnostics of the valve island (e.g. under- / overvoltage) the module is marked with a red symbol in the "Device overview".

Online device diagnosis

Double click the red symbol to change into diagnostics view of the module. Highlight the "Diagnostic status" line to get detailed information about the pending module diagnostics.


Online channel diagnosis of an IO-Link master port

6.5 Diagnostics with an IO-Link master configuration tool

The diagnostic data can be read out via the web interface or the configuration tool of the IO-Link master. This requires uploading the device parameters from the device to the tool.

The following figure shows an example of how a possible undervoltage of the valve power supply 2L + (VA +) is displayed in the configuration tool of the master.

Representation of the diagnosis in the configuration tool

7 IO-Link error codes

IO-Link event code (hexadecimal)	Error Description	Associated LED
0x0000	OK, no errors	"SF" LED, green
0x7710	Solenoid, short circuit	"SF" LED, flashing red
0x7700	solenoid, open circuit	"SF" LED, flashing red
0x5111	Undervoltage electronic power supply L + (VS +)	"VS" LED, flashing red
0x5110	Overvoltage electronic power supply L + (VS +)	"VS" LED, red
0x5112	Undervoltage valve voltage supply 2L + (VA +)	"VA" LED, flashing red
0x5112	Overvoltage valve power supply 2L + (VA +)	"VA" LED, red

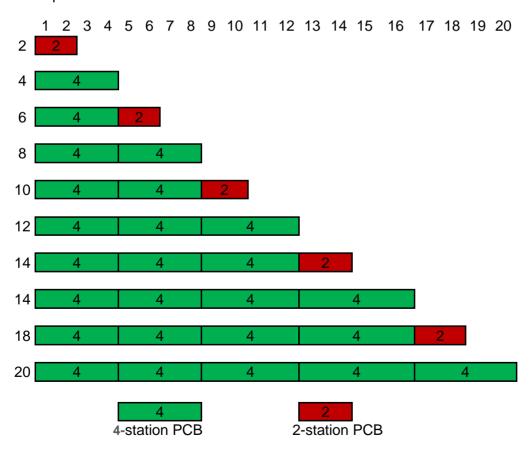
8 Properties of the IO-Link interface

Details		Comment
Protocol	IO-Link version 1.1	
Baud rate	COM 3 (230.4 kBaud)	
Min. Cyclus time	5ms	
IO-Link Port Class	Class B	
Language IODD	EN	

9 Extension of the valve island

Valve islands can be extended using the 2- and 4-station PCBs as described in this chapter.

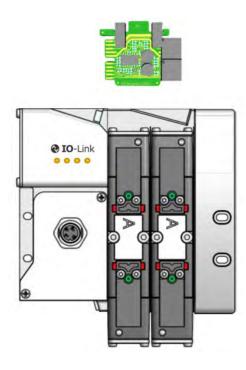
The following expansion boards are available:



VS2672762-KG00 / VS1872262-KF00 4-station PCB VS2672764-KG00 / VS1872264-KF00 2-station PCB

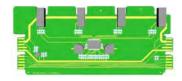
9.1 Overview - preferred combinations SPI boards

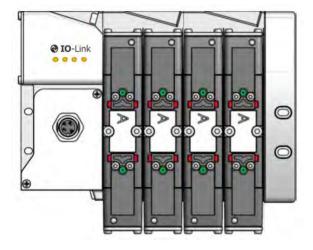
Below illustration shows an overview of the preferred combinations of existing PCBs in order to build the required number of valve stations

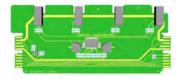


Note:

It is generally possible to use the 2-station PCBs (VS2672764-KG00 / VS1872264-KF00) on all positions but it is recommended to use the above combinations. In special cases with increased modularity requirements, the product support should be contacted.

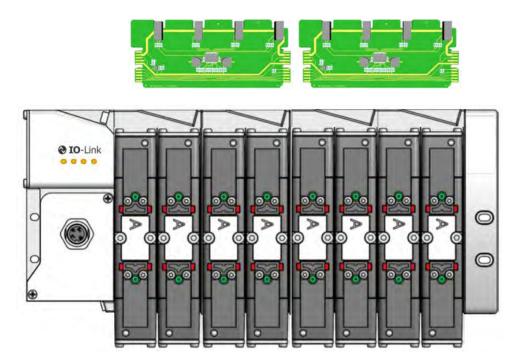

The below sections show the preferred combinations of the existing SPI boards for various valve island configurations.

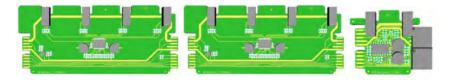

9.2 Valve island with 2 stations

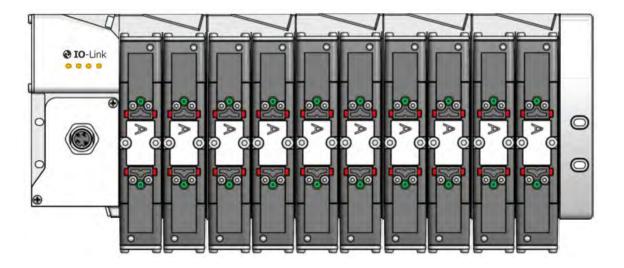


9.3 Valve island with 4 stations

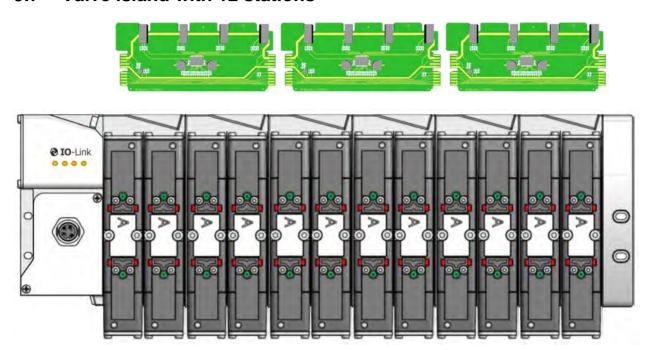
9.4 Valve island with 6 stations

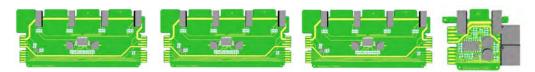




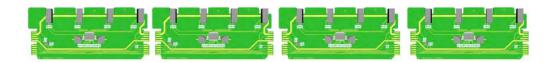


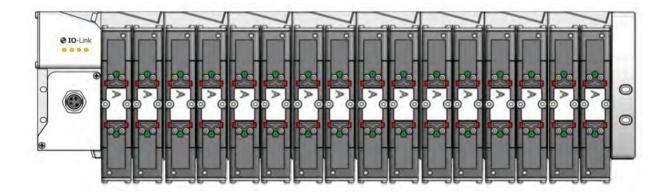
9.5 Valve island with 8 stations

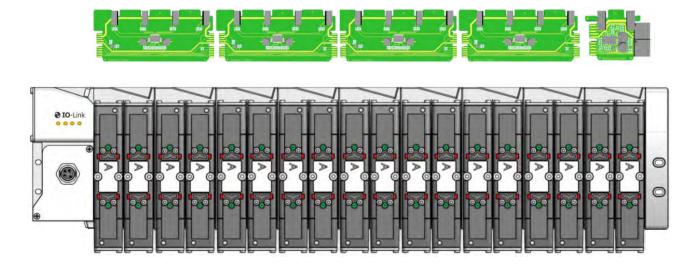

9.6 Valve island with 10 stations



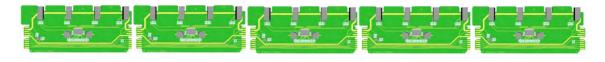
9.7 Valve island with 12 stations

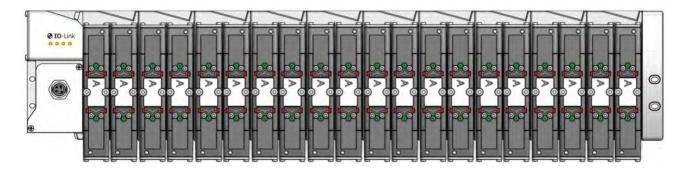

9.8 Valve island with 14 stations



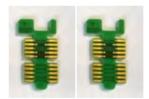


9.9 Valve island with 16 stations




9.10 Valve island with 18 stations

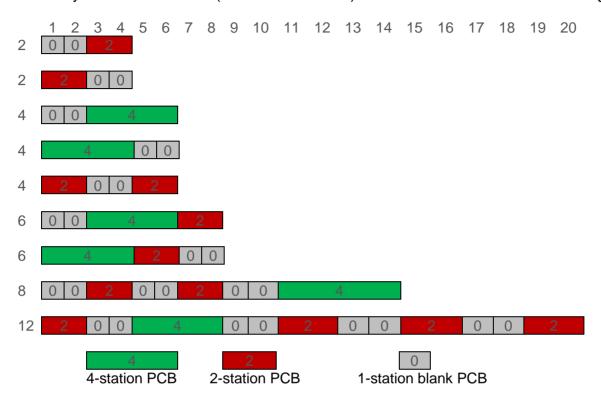
9.11 Valve island with 20 stations



9.12 Usage of Soft-start valves

Soft-start valves are only available for VS26. Maximum number of soft-start valves in one valve island is 4. Use always 2 single blank PCBs (VS2672763-KG00) with 1 soft-start valve (VS2672530-KG00)

VS2672530-KG00


VS2672763-KG00

Up to 4 soft-start valves may be added at even positions (0, 2, 4, ...20, 22, 24).

See below some configurations as examples when using the soft-start valve. Only number/positions of valve slices + blanking plates + ISEM plates are counted with respect to station numbering in below configurations.

Note: Only the 2-station PCB (VS2672764-KG00) should be used in the below configurations.

10 Electrical data

Details		comment
Voltage range valves (VA+):	24VDC +/-10%	PELV
Voltage range electronics (VS+):	24VDC +/-30%	PELV
Power consumption max:	VA: 25mA + n x 70mA VS: < 250mA	n = number of switched valves
Voltages galvanically isolated	Yes	-
Reverse polarity protection	VS+, VA+	-
Overcurrent protection VS, VA	Ireversible	Protection against thermal overload, i.e.overload and short circuit
PE / FE connection	Yes	via module housing
Electrical connection	M12 / 5-pin / A-coded / male	M12-1: L+ (VS+) M12-2: 2L+ (VA+) M12-3: L- (VS GND) M12-4: C/Q M12-5: 2M (VA GND)

11. Technical data

11.1 Technical data VS18 und VS26

Medium:

Compressed air, filtered to 40µm, lubricated and non - lubricated

Operation:

VS18G / VS26G: Glandless spool valve, solenoid pilot actuated VS18S / VS26S: Softseal spool valve, solenoid pilot actuated

Mounting:

Sub-base

Operating pressure:

Maximum pressure

10 bar VS18S / VS26S models and VS18G / VS26G solenoid pilot actuated valves with internal pilot supply

16 bar VS18G / VS26G solenoid pilot actuated valves with external pilot supply

Ambient temperature:

-15°C to +50°C

Medium temperature:

-5°C to +50°C (Consult our Technical Service for use below +2°C)

Materials:

Body/sub-base: die-cast aluminium

Glandless spool & sleeve: Aluminium, hard anodized, Teflon coated

Softseal spool: Aluminium with HNBR seals

Plastic parts: POM, PA, PPA

Mounting sheets / srews: Steel, zinc coated

Springs: Stainless steel

Sandwich plates: Aluminium bar materials, PA

Electrical contacts: Brass, tin coated

PCB: Glass epoxy

11.2 Technical data VS18

Ports 2 + 4:

G1/8, NPTF 1/8, PIF 6 mm, PIF 8 mm, PIF 1/4

Ports 1 + 3 + 5:

G1/4

Valves:

ISO 15407-2 - 18 mm

Flow rate:

Series	Function	Q _N	Cv	K _v
		[L/min]	[US Gal/min]	[m³/h]
VS18G	5/2	550	0,56	0,48
VS18G	5/3	550	0,56	0,48
VS18S	2x2/2	550	0,56	0,46
VS18S	2x3/2	600	0,61	0,52
VS18S	5/2	650	0,66	0,57
VS18S	5/3	650	0,66	0,57

11.3 Technical data VS26

Ports 2 + 4:

G1/4, NPTF 1/4, PIF 10 mm, PIF 8 mm, PIF 3/8

Ports 1 + 3 + 5:

G3/8

Valves:

ISO 15407-2 - 26 mm

Flow rate:

Series	Function	Q _N	Cv	K _v
		[L/min]	[US Gal/min]	[m³/h]
VS26G	5/2	1000	1,02	0,87
VS26G	5/3	1000	1,02	0,87
VS26S	2x2/2	1150	1,17	1,00
VS26S	2x3/2	1250	1,27	1,09
VS26S	5/2	1350	1,37	1,18
VS26S	5/3	1350	1,37	1,18

Customer support

www.norgren.com

Norgren GmbH

Werk Fellbach Stuttgarter Straße 120 70736 Fellbach Tel: +49 711 5209 -0

The data specified above only serve to describe the product

No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of exercising judgment and verification. It ust be remembered that our products are subject to a natural process of wear and aging

© This document, as well as the data, specifications and other information presented in it are the sole property of Norgren GmbH. It may not be reproduced or given to third parties without their consent

Subject to change without notice.

Printed in Germany

Order no: 7503763000000006

ΕN